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THERMAL-PARAMETER DETERMINATION FOR THIN-WALLED 

DRUM-TYPE CRYSTALLIZERS 

V. V. Bodrov UDC 536.242:66.065.52 

A two-dimensional heat-transfer problem has been solved with boundary conditions 
of the first and third kinds for a rotating hollow thin-walled cylinder. An ex- 
ample of the results in use is given. 

Crystallizers of drum type are used in metallurgy [i], in the chemical industry [2], and 
in the production of ice [3], so calculations on their thermal conditions are of interest. 

Studies have been made [4-6] of the thermal fields in a rotating hollow cylinder with 
boundary conditions of the first kind. 

In [4], a thin-walled cylinder was envisaged, with a temperature difference only around 
the perimeter. In [5], on the other hand, the temperature change along the cylinder director 
was not incorporated. In [6], the problems were solved with temperature variation along the 
radial and angular coordinates. The solution was presented in terms of Kelvin functions, 
which makes for certain difficulties in using it. 

If the radius of the cylinder is greater than the wall thickness by a factor of 50 or 
more, the problem can be treated in Cartesian coordinates, which simplifies it considerably. 
This formulation may be applied to a two-dimensional plate of finite length with a conjuga- 
tion condition at the ends. 

In [7], the two-dimenslonal problem was solved for a rectangular plate with a tempera- 
ture distribution on one of the surfaces varying in a specified fashion with time, while 
there was zero temperature at the other surfaces and a nonzero initial temperature distribu- 
tion. 

A real crystallizer usually works in a quasistationary state, where the initial tempera- 
ture distribution is unimportant and the ends of the plate have identical nonzero but unknown 
temperature distributions over the thickness, while Newtonts law applies to the heat transfer 
at the cooled surface. The problem is formulated mathematically as 

1 aO 020 + 020 O<x-~<6, (1) 

a a~ =ax--; Oy~ ' O < V < . l = 2 ~ R ,  

O(x, y, 0 ) = 0 ,  0~,  O, T )=O~ ,  t, ,), (2) 
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As we lack a boundary condition along the y coordinate, from (4) we get two equations 

0(6, 0, "0 = Cq,, + ~ (Cmcos~0~+ Dmsin0)~), (Sa) 
2 

n z ~  I 

oo 

o (0. v , .  v 
We apply  a Laplace t r a n s f o r m a t i o n  w i t h  respect  to t ime to (X) and use (2) to get 

..ss.. L = - -  o2L 4- - -  o2L (6) 
a Ox 2 Oy 2 

The integral of (6) takes t h e  form 

L (x, y, s) = NI ch kx + N 2 sh kx + Nn ch ky + N~ sh ky; 

The constants of integration are found from boundary conditions (2), 
oo 

L= + c,,,,, ++ o.oo, (,_ 
r a ~  1 

r 

k=  V s 
G 

( 3 ) ,  and (5) : 

eoshkl ) ]  

sh kl - -  2sh- k--~-/' • 
2 

C,.s + D~o 
s2 + o 9 

k6 ch kx + Bi sh kx + sh k (l - -  V) + sh ky k6 + Bi sh kx 
X , ~ =  l--COS~m. 

kSchkS+Bishk6 sh k / - -  2sh .kl k5 + Bishk8 
2 

We use the expansion theorem for simple and multiple roots to return to the orlglnal: 
/ 

Co 1 + Bi z F (z,o x) .Dm Pd -- Cm~;~ 1 - -  

O(x, y, ' 0 =  ~ 1~-~13~ + ~ + P d Z + ~  sin~ . _ /  2sinl~n I 
m=, .=1 r.=1 a 2--'8" 

r ) ]  

sh q - -  2sh q ' 
2 

(7) 

(8) 

M• C,~=FiD,n [ p+Bishpz  
2 q~ p + Bishp 

+ ~.~ [(Mi + M_0 cos o r  + i (Mt + M_i sin o,)1; 
r r t =  1 

F(z' *)= An ( cOslxnz+ B.B'-L sinB'~z)exp(--l~n2Fo), 

21u, n 2 ] / ' ~  + Bi z 
A .  = Bi 2 "4- Bi + p,~ ' tt" + Bi th ~,, = 0, 

sh q (1 - -  ~,) + sh qy 4- p ch pz + Bi sh pz [ 1 -- 
sh q - -  2sh ,.fl ' p ch p + Bi sh p k 

2 

p - - - - . ~ i P d ,  q =  , z =  , ' y = - ' ~ " .  

F(z, ,) 

(9) 

The temperature distribution over the wall thickness in the rotating cylinder is the 
point of interest, and for any arbitrarily taken point yj it differs only in the time origin, 
which is of no interest, so we take yj 0 as fixed point and 

0(x, O, ~ ) =  0d(x, ~). (10) 
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Fig. i. Time dependence of  ~he c r y s ~ a l l i z e r  wall 
temperature: 1-5)  corresponding ly  fO~ Z " 1,  0 . 7 5 ,  
0 . 5 ,  0 .25 ,  and 0; 6) ~empera~ure averaged over 
~he wall ~hickness; T in ~ and ~ ~n SOC. 

Fig. 2. Dependence of ghe heag fl~x on ~ime as 
calculated from (14): 1 and 3) fog ~ - I and 0 
as calculated from ~he S~efan sol,[~on [7]; 2) 
for z ffi i; q.10 ~, W/m ~. 

The d e f i n i t i o n  o f  w a l l  t h i n n e s s  ~/~ > 100~ means  ~ h a t  ~ a / a  ~ 0 , 0 1  f o r  a l l  p o s s i b l e  c r y s t a l -  
l i z e r s .  Then wt~h ~hese va lues  

6 ) :  

q > 3 0 ,  shq = 1, 

sh q - -  2sh 
2 

(11) 

From (9)  w i t h  (11)  we get  as f o l l o w s  f o r  ~he quasisga~go~ary hea~-Rransfer  s~a te  (Fo > 

~o 

0d(X ' x) = Co I + Bi z +_ Z c h ~  
2 1 + B i  c-~ l(l--,)(utv~+u,o,) +~(u~vs+ulvi)], ( 1 2 )  

r n =  1 
6 

"0d' (*) = " ~  Oddx = -~" l + Bi (13)  
0 m = l  

2 + 1 ,  (14)  

ul --  th ~ (o cos ~z - -  sin cz) + cos cz, uz = sin ~ (~ + th ~) + cos r 

u 3 ---- o th sc cos ~ + sch o~, u~ ---- ~ sin ~ + sch ~, 

u ~ = ~ (th [~ sin is + cos 13 -- sch [~) + 2th [~, 

ug = ~ (th 13 sin [~ - -  cos iS + sch iS) - -  2sin [~, 

u ~ = cr (th iS sin iS + cos iS - -  sch iS) + 2iS sch 8, 

u~ = cr (th iS sin [3 - -  cos iS + sch iS) ~ 2~ sch [3, 

u ~ = e (cos ~ - -  th ~ sin m) - -  2sin g, u~ = r (cos o~ + th ~ sin ,t) + 2th cz cos ~, 

u~ = g (cos ~ - -  t h  ~ s i n  ~z), u 4 = g (cos cz + th cz sin,t), 

(CmOl - -  DraG2) cos co'~ + (C,.O~ + D=GI) sin o)T vl = + . . . . . . . . . . .  ' 

(C=G2 + D=OO cos o* -- (C=G, -- DmGi) sin o~. 
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v8 = . (Cm.Os - -  DmO~) cos or~ q- (O,~O~ q- DraG3! sin o~v 
+ 

(CrnO~ + D,~Os) cos r --(C~Os - -  D,~O~) sin ~ 
v, = + ' 

01 = th 13 (~ cos [3 -- sin [3) -1- cos 13, 02 = sin [5 (g q- th [~) + cos [3, 

Os = ~ th 13 cos 13 + sch 13, O~ = ~ sin ~ + sch ~, 

, 

The c o n d i t i o n  f o r  t r a n s f e r r i n g  to  t h e  o n e - d i m e n s i o n a l  c a s e  i n  ( 1 2 ) - ( 1 4 )  i s  ,~ = O. 

As a rule, the temperature gradient in the cross section of a crystallizer substan- 
tially exceeds the gradient along the y coordinate, so we test the desirability of using the 
formulas for the two-dlmenslonal case. 

We consider a steel crystallizer of drum type with diameter Day = 1.01 and wall thick- 
ness 6 = 0.01 in an experimental equipment for freezing steel-castlng slags, which is 
cooled from within by boiling water. The temperature of the outer surface was measured with 
a pocketed thermocouple. The resulting curve for the steady-state period of heat transfer 
was averaged~ approximated, and expanded as a Fourier series. The heat flux at the outer: 
surface was determined by solving the Stefan's problem with a known wall temperature. The 
Blot number was calculated with known mean values for the temperature and heat flux. From 
these data we calculated the temperature distribution and the heat flux for the largest and 
smallest crystallizer speeds allowed by the technological parameters. 

Figures 1 and 2 show the results for the maximum speed of 28.6 rpm. The heat-flux 
curve for the hot surface deviates from the curve calculated by solving the Stefan problem 
evidently because of the inaccuracy in the averaging or in approximating the experimental 
data. 

The calculations were performed for the two-dimenslonal and one-dimensional (~= 0) 
cases. The discrepancies in the temperatures did not exceed 1.4% for the maximum speed or 
2.3% for the minimum one. 

The heat fluxes differed considerably: 

Aq ( z ,  x )  = - q~ (z, ~)--  [q (z, ~)1~.=0 . 100%, 
�9 [ q ( z ,  '~ ) I~=o 

- - 7 ~ < A % a x ( I ;  x)~6.56;  --2.8~.~Aqmax (0, '~)<3.1, 
- -  21.6 ~ hqra~,, (1J) ~ 13.8; - -  6.9 ~< Aqmln (0, "r ~--< 8,8. 

With Bi= =, we obtained a solution from (12) for boundary conditions of the first kind 
and calculated the temperature pattern under identical conditions from (12) and from the so- 
lution in the rigorous formulation [6] for y = 0. The discrepancies were not more than 0.8% 
for the minimum speed. 

Therefore, the solution to (12) gives satisfactory accuracy with more general boundary 
conditions at the cooled surface and is also considerably more convenient to use than the 
solutions to analogous problems in [4-6]. 

One can neglect the temperature gradient along the y coordinate in order to simplify the 
calculation further only when the thermal activity of the crystallizer material exceeds 
that of the crystalllzing material by an order of magnitude or more and is determined only by 
the temperature pattern in the crystallizer. 

NOTATION 

a, ~, thermal diffuslvity and thermal conductivity, respectively; x, y, x, coordinates 
and time x; 6~ ~, R, thickness length, and radius of the crystallizer wall; 8, temperature; 
q, heat flux; m, angular frequency of the m-thharmonic; Co, C m, D m, Fourier expansion coef- 
ficients; Lsss Laplace transforms of temperature and time; Bi, Pd, Blot and Predvodite~ev 
numbers~ respectively; i = ~ n, m = i, 2~ 3, ...~ ~; subscripts d, two-dimensional 
problem; av, mean value; c, thermal effect cycle. 
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